

COORDINATED HIGHWAYS ACTION RESPONSE TEAM
STATE HIGHWAY ADMINISTRATION

R1B2A High Level Design

Contract DBM-9713-NMS
TSR # 9803444

Document # M303-DS-004R0

October 16, 2000
By

Computer Sciences Corporation and PB Farradyne Inc

R1B2A High Level Design Rev.0 10/16/00 i

Revision Description Pages Affected Date
0 Initial Release All October 16, 2000

R1B2A High Level Design Rev.0 10/16/00 ii

Table of Contents
1 Introduction ...1-1
1.1 Purpose..1-1

1.2 Objectives..1-1

1.3 Scope..1-1

1.4 Design Process ..1-1

1.5 Design Tools ..1-2

1.6 Work Products..1-2

2 Software Architecture ...2-3
2.1 Transportation Sensor Systems ..2-3

2.2 RTMS Service...2-3

2.3 TSS Web Client ..2-4

2.4 Internet Map Server...2-4

2.5 Field Communications ...2-4

2.5.1 Communications Servers (FMS Remote PC)...2-4

2.5.2 Port Manager ..2-4

2.5.3 RTMS Protocol Handler...2-4

2.6 Database Usage...2-5

2.7 ITS National Standards Approach ...2-5

3 Models..3-1
3.1 Use Case Diagrams...3-2

3.1.1 RTMSUseCase (Use Case Diagram) ...3-2

3.2 Class Diagrams ...3-7

3.2.1 TransportationSensorSystem (Class Diagram) ..3-7

3.3 Sequence Diagrams ..3-13

3.3.1 AddRTMS:Basic (Sequence Diagram) ..3-13

3.3.2 ConfigureRTMS:Basic (Sequence Diagram)...3-14

3.3.3 DetermineRTMSStatus:Basic (Sequence Diagram) ..3-15

3.3.4 DetermineRTMSStatus:CurrentStatusPush (Sequence Diagram)3-16

R1B2A High Level Design Rev.0 10/16/00 iii

3.3.5 GetRTMSConfiguration:Basic (Sequence Diagram)...3-17

3.3.6 GetRTMSStatus:Basic (Sequence Diagram) ...3-18

3.3.7 LogRawRTMSData:Basic (Sequence Diagram)..3-19

3.3.8 PollRTMS:Basic (Sequence Diagram)...3-20

3.3.9 PutRTMSinMaintMode:Basic (Sequence Diagram)..3-22

3.3.10 PutRTMSOnline:Basic (Sequence Diagram) ...3-23

3.3.11 RemoveRTMS:Basic (Sequence Diagram) ..3-24

3.3.12 SummarizeRoadwayStatus:ConfigChanged (Sequence Diagram).......................3-25

3.3.13 SummarizeRoadwayStatus:CurrentStatus (Sequence Diagram)3-26

3.3.14 SummarizeRoadwayStatus:Initialize (Sequence Diagram)..................................3-27

3.3.15 SummarizeRoadwayStatus:ModeChanged (Sequence Diagram)3-29

3.3.16 SummarizeRoadwayStatus:ObjectAdded (Sequence Diagram)...........................3-30

3.3.17 SummarizeRoadwayStatus:ObjectRemoved (Sequence Diagram)3-31

3.3.18 SummarizeRoadwayStatus:OpStatusChanged (Sequence Diagram)3-32

3.3.19 TakeRTMSOffline:Basic (Sequence Diagram)..3-33

3.3.20 ViewRoadwayStatus:Basic (Sequence Diagram)...3-34

4 Packaging ..4-35
4.1.1 TSSPackaging (Class Diagram) ...4-35

5 Deployment..5-36
5.1 RTMSDeployment (Deployment Diagram) ...5-36

Bibliography
Acronyms
Glossary
Appendix A: CORBA Information

R1B2A High Level Design Rev.0 10/16/00 1-2

Table of Figures
Figure 1. RTMSUseCase (Use Case Diagram)..3-3

Figure 2. TransportationSensorSystem (Class Diagram)...3-7

Figure 3. AddRTMS:Basic (Sequence Diagram)...3-13

Figure 4. ConfigureRTMS:Basic (Sequence Diagram) ...3-14

Figure 5. DetermineRTMSStatus:Basic (Sequence Diagram)...3-15

Figure 6. DetermineRTMSStatus:CurrentStatusPush (Sequence Diagram)3-16

Figure 7. GetRTMSConfiguration:Basic (Sequence Diagram) ...3-17

Figure 8. GetRTMSStatus:Basic (Sequence Diagram) ..3-18

Figure 9. LogRawRTMSData:Basic (Sequence Diagram) ..3-19

Figure 10. PollRTMS:Basic (Sequence Diagram) ...3-21

Figure 11. PutRTMSinMaintMode:Basic (Sequence Diagram) ..3-22

Figure 12. PutRTMSOnline:Basic (Sequence Diagram) ...3-23

Figure 13. RemoveRTMS:Basic (Sequence Diagram) ..3-24

Figure 14. SummarizeRoadwayStatus:ConfigChanged (Sequence Diagram)...........................3-25

Figure 15. SummarizeRoadwayStatus:CurrentStatus (Sequence Diagram)3-26

Figure 16. SummarizeRoadwayStatus:Initialize (Sequence Diagram)3-28

Figure 17. SummarizeRoadwayStatus:ModeChanged (Sequence Diagram).............................3-29

Figure 18. SummarizeRoadwayStatus:ObjectAdded (Sequence Diagram)...............................3-30

Figure 19. SummarizeRoadwayStatus:ObjectRemoved (Sequence Diagram)3-31

Figure 20. SummarizeRoadwayStatus:OpStatusChanged (Sequence Diagram)3-32

Figure 21. TakeRTMSOffline:Basic (Sequence Diagram) ..3-33

Figure 22. ViewRoadwayStatus:Basic (Sequence Diagram)...3-34

Figure 23. TSSPackaging (Class Diagram)..4-35

Figure 24. RTMSDeployment (Deployment Diagram) ...5-36

R1B2A High Level Design Rev.0 10/16/00 1-1

1 Introduction

1.1 Purpose
This document describes the high level design of the software for Release 1, Build 2A. This
software design includes the requirements for this build in the form of Use Cases. The purpose of
this software build is to gather speed data from Remote Traffic Microwave Sensor (RTMS)
devices and display the data on the Coordinated Highways Action Response Team (CHART)
web site.

1.2 Objectives
The main objective of this design is to provide software developers with a framework in which to
provide detailed design and implementation of the software components used to allow speed data
to be displayed on the CHART web site in the form of a statewide color coded map.

This design also serves to obtain agreement with the requirements as stated in the Use Cases and
the approach given to meet the requirements.

1.3 Scope
This design is limited to release 1, build 2A (R1B2A) of the CHART II / Field Management
Station (FMS) system and the components to be used on the CHART web site to acquire data
from the CHART II system and display the data on the web site.

1.4 Design Process
Object oriented analysis and design techniques were used in creating this design. As such, much
of the design is documented using diagrams that conform to the Unified Modeling Language
(UML), a de facto standard for diagramming object-oriented designs.

In addition to being object oriented, this design incorporates distributed object techniques, which
allow for great flexibility and scalability of the system. In a distributed object system, objects can
be deployed in servers throughout the network. This design addresses the partitioning of object
types into specific server applications for this release.

The design process is very iterative: each step can possibly cause changes to previous steps.
Listed below is the process that was used to create the work products contained in this document:
• = The team met with the clients to gain an understanding of the high level requirements of the

system. The outcome of this meeting is recorded in document number M361-MM-019R0,
“RTMS Requirements Review Meeting Minutes,” 09/08/00.

• = The team created a use case diagram to encompass uses of the system as they were stated in
the client meeting. Each use case was documented to capture requirements obtained during
the client meeting as well as derived requirements.

• = A straw man class diagram was created with major entities evident in the use cases being
listed as possible classes in the system. High level relationships between the classes were
discovered and documented on the class diagram.

R1B2A High Level Design Rev.0 10/16/00 1-2

• = Sequence diagrams were created for each use case, showing at a high level how the classes
on the class diagram would be used to perform the use case. This often involved changes to
the class diagram, such as adding classes, moving responsibilities between classes, or adding
operations to a class. Sometimes the changes affected other sequence diagrams as well.

• = After the process of creating sequence diagrams and associated changes to the class diagram,
an internal review was held to gain agreement on the design approach and to resolve
remaining issues. Minutes from this meeting are contained in document number M361-MM-
021R0, “RTMS Coordination Meeting Minutes,” 09/20/00.

• = The design was broken down into packages, grouping classes with a high amount of
dependency together.

• = A deployment diagram was created to show the planned deployment of the system.

1.5 Design Tools
The work products contained within this design are extracted from the COOL:JEX design tool.
Within this tool, the design is contained in the Chart II project, R1B2 configuration, Analysis
phase, system version RTMS.

1.6 Work Products
This design contains the following work products:
• = A UML Use Case diagram which captures the requirements of the system.
• = A UML Class diagram, showing the high level software objects which will allow the system

to accommodate the uses of the system described in the Use Case diagrams.
• = UML Sequence diagrams showing how the classes interact to accomplish each use case.
• = A UML Package diagram, showing how the classes are broken up into manageable software

packages.
• = A UML Deployment diagram, showing which servers will serve each class of objects.

R1B2A High Level Design Rev.0 10/16/00 2-3

2 Software Architecture
The architecture is based around the R1B2 CHART II and FMS architecture. As such, the
Common Object Request Broker Architecture (CORBA) is used as the base architecture, with
custom built software objects made available on the network to allow their data to be accessed
via well defined CORBA interfaces.

The sections below discuss specific elements of the architecture and software components that
comprise the system.

2.1 Transportation Sensor Systems
The National Transportation Communications for ITS Protocol (NTCIP) has defined the term
Transportation Sensor System (TSS) to describe any system capable of sensing and
communicating traffic parameters using the NTCIP protocol. Although the RTMS does not
communicate using NTCIP, it otherwise fits into the definition of a Transportation Sensor
System. For this reason, the NTCIP terminology is used throughout this design to make the
design re-usable for other types of sensors and not be “hard coded” for the type, make, and
model sensor being used to provide traffic parameters. Users of the software objects specified in
this design, such as the CHART web site, can interface generically with Transportation Sensor
System objects to allow for the support of other types of sensors that may be brought online to
the CHART II system in the future.

2.2 RTMS Service
The RTMS Service is a standard CHART II service application that serves RTMS software
objects, which are on type of Transportation Sensor System. The RTMS Service makes use of
the existing CHART II service application framework and benefits from functionality provided
by the framework, such as object publication, event based notification, and common startup and
shutdown sequences. In addition, the availability of the RTMS Service can be tracked in the
CHART II system along with other application services.

An RTMS software object exists in the system for each RTMS in the field that is to provide data
to the system. The RTMS Service publishes these objects in the CORBA trading service to allow
other applications to discover and use these objects. Each of these RTMS software objects
periodically poll their field counterpart and store the current status reported by the field device.
Each RTMS object contains a number of changeable configuration values such as a user friendly
name for the device, communications parameters, polling frequency, and others.

When there is a change to the status or configuration of an RTMS, an asynchronous event is
pushed via a CORBA event channel to allow other applications to be notified of the change.
Events are also pushed on an event channel when an RTMS is added to or removed from the
system. Changes to values of traffic parameters sensed by an RTMS do not cause an
asynchronous event to be pushed due to the dynamic nature of these values. Instead of pushing
when there is a change to these values, a periodic push of the current status of all RTMS devices
is done.

R1B2A High Level Design Rev.0 10/16/00 2-4

2.3 TSS Web Client
The TSSClient is an application that runs on the web server and acts as an interface between the
CHART II system and the CHART web map. The TSSClient uses CORBA to interface with the
CHART II system and passes data received from CHART II to the web map via a database table.

The TSSClient discovers CHART II RTMS objects and event channels that exist in the system
by querying the CORBA trader. Upon startup, it asks each RTMS object for its current status and
updates the web database with the appropriate information. The TSSClient then listens to events
that are pushed from CHART II through CORBA event channels and updates the web database
as needed.

2.4 Internet Map Server
The Map Server is used to serve requests from the web server to generate a map. When the web
server receives a request for the web page that contains the current speed data, it asks the map
server to generate a map image. The map server generates a map image and includes symbols
that represent instrumented sections of roadway. The map server queries the web database to
retrieve information for each of these symbols and uses the information to color the symbols
based on the current average speed for that section of roadway.

2.5 Field Communications
R1B2A uses the communications components designed and developed under FMS R1B2 to
communicate with RTMS devices. Refer to FMS R1B2 High Level Design for more information
on the FMS subsystem. The sections below discuss how the FMS components are used in
R1B2A.

2.5.1 Communications Servers (FMS Remote PC)
Communications servers are used in R1B2A to connect to RTMS devices deployed throughout
the state of Maryland. A communication server is a PC that is outfitted with one or more pieces
of communications hardware, such as Integrated Services Digital Network (ISDN) and Plain Old
Telephone System (POTS) modems. This communications hardware is used remotely by the
RTMS Service to connect to RTMS devices from a location on the statewide network that is
physically close to the device that usually offers reduced communications costs.

2.5.2 Port Manager
A Port Manager is a software object that manages access to the communications hardware on a
Communications Server. The RTMS software object acquires communications ports from one or
more Port Manager objects. RTMS software objects use a communication port to exchange data
with RTMS devices.

2.5.3 RTMS Protocol Handler
The RTMS Protocol Handler is a utility class that encapsulates the communication protocol used
to retrieve data from an RTMS device. After a port is retrieved from a Port Manager and

R1B2A High Level Design Rev.0 10/16/00 2-5

connected to the device, the RTMS Protocol handler is used to send the correct sequence of bytes
to the device and interpret the response from the device.

2.6 Database Usage
The CHART II database is used to store configuration data for each RTMS currently known to
the system. Data is retrieved from the database at startup to allow the RTMS objects to assume
their last known configuration. When configuration values are changed, the data is written
immediately to the database so it is available if the server should be restarted. The only status
data persisted to the database is the communications mode of the RTMS (online, offline,
maintenance mode) and the operational status (OK, COMM_FAILED, and
HARDWARE_FAILED). Status data such as speed, volume, and occupancy are absent from the
RTMS status until the RTMS is polled for the first time.

The CHART web site uses its own database engine. The TSSClient updates a table in the web
database as data from CHART II is received. The table is queried each time a web user requests
the web page that contains the map of current speeds.

2.7 ITS National Standards Approach
Components to be developed as a part of R1B2A are designed to be compliant with the current
Intelligent Transportation System (ITS) national standards in both the Center-to-Center and
Center-to-Field requirements. The Center-to-Center requirements are met because the CORBA
interface used to obtain RTMS data is CORBA, one of two methods approved by the National
Transportation Communications for ITS Protocols (NTCIP) Center-to-Center committee for
communication between ITS software components.

Center-to-Field standards for sensors such as the RTMS have not yet been approved and
therefore by default this design meets the current NTCIP Center-to-Field standards. Because of
this lack of standards, the communications to the RTMS device uses the manufacturer protocol,
encapsulated in the RTMSProtocolHdlr object in this design. Should an NTCIP compliant device
exist in the future, a protocol handler that performs NTCIP communications would be written
and used in this design where RTMSProtocolHdlr is now used.

Although an approved Center-to-Field standard does not exist, the design takes into account
work in progress on the NTCIP standard for Transportation Sensor Systems in its naming and
terminology.

R1B2A High Level Design Rev.0 3-1 10/16/00

3 Models
The following sections provide models and diagrams that show the high level design of the
R1B2A software. This section contains a use case diagram for each use of the system, with each
use case providing requirements of the system. A class diagram shows software objects that
comprise the system and the relationships between them. Sequence diagrams are provided to
show how objects interact to accomplish specific uses of the system.

R1B2A High Level Design Rev.0 3-2 10/16/00

3.1 Use Case Diagrams

3.1.1 RTMSUseCase (Use Case Diagram)

This diagram shows the uses of the “Real Time Traffic Maps” portion of the CHART web
site. The main purpose of this effort is to provide graphical display of the status of speed
sensed by RTMS devices to CHART Intra/Internet users. Upon web browser request, the
web map server will generate a map image, along with associated information of each
sensor that will display arrows with different color or shape to show the current average
speed being retrieved from CHART system. For example, a sensor monitoring a roadway
where the current average speed is between 0 and 29 MPH might be displayed as a red
arrow pointing in the direction of the traffic. A roadway with a current average speed
between 30 and 54 MPH might be displayed as a yellow arrow pointing in the direction of
traffic, etc.

R1B2A High Level Design Rev.0 3-3 10/16/00

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»«uses»

get data

Put RTMS
Online

Take RTMS
Offline

Put RTMS
in Maint Mode

Poll RTMS
TransportationSensorSystem

Determine RTMS
 Status

Get RTMS Status Log Raw
RTMS
Data

Add RTMS

Log File

Get RTMS
Configuration

Remove
RTMS

Configure RTMS

Administrator

put data

Web User

Summarize
Roadway

Status

View
Roadway

Status

Figure 1. RTMSUseCase (Use Case Diagram)

R1B2A High Level Design Rev.0 3-4 10/16/00

3.1.1.1 Add RTMS (Use Case)

A CHART II user with the appropriate functional rights (usually an administrative user)
shall be able to add an RTMS to the system. During the process of adding the RTMS, the
user must configure the RTMS for use in the system. See the Configure RTMS use case for
details. When an RTMS is added, it is added in the offline state. It must be placed online
before it begins providing data to the system. See the Put RTMS Online use case for details.
Notification of the addition of the RTMS is sent to interested parties.

3.1.1.2 Configure RTMS (Use Case)

An RTMS must be configured within the system to match the setup of the device in the
field. Each of the eight detection zones of the RTMS that are configured to sense traffic
must be placed into logical groupings. A direction must be assigned to each zone group and
optionally, a text description of the group may be entered.

In addition to the configuration of the zones of the RTMS into groups, the system shall
allow a name to be assigned to each RTMS as well as a textual description of the RTMS
location.

Communication parameters shall be able to be configured, which includes the primary and
secondary communications server host names, the phone numbers (per comm server), type
of modem used to dial the RTMS, the baud rate, data bits, stop bits, parity, and flow
control.

The polling rate for the RTMS shall be able to be configured, with a resolution of 1 second
and a range from 1 second to 24 hours. The default value shall be 5 minutes. The user must
take into consideration the Message Period programmed into the RTMS device when
setting the polling rate.

Each RTMS in the system shall be assigned a unique identifier when it is added to the
system. This unique identifier shall become part of the RTMS configuration, however it
cannot be changed.

3.1.1.3 Determine RTMS Status (Use Case)

The system shall periodically poll each RTMS in the system and determine its current
status. The current status of all RTMS objects shall be periodically sent to the web site. The
interval on which the current is sent to the web site shall be configurable.

3.1.1.4 Get RTMS Status (Use Case)

The current status for an RTMS may be retrieved. This status shall include the current
traffic parameters (volume, speed, occupancy) for each zone group configured for the
RTMS and the current mode of the RTMS (online / offline / maintenance mode). Also
included is the operational status of the device. This status shall be set to OK if the device
was polled successfully on the last attempt. The operational status shall be set to

R1B2A High Level Design Rev.0 3-5 10/16/00

COMM_FAILURE if the device could not be connected or did not respond during the last
poll attempt. The operational status shall be set to HARDWARE_FAILURE if the status
returned by the RTMS indicates a problem (byte 11 of the speed message contains a value
other than 10, 20, 30, 40, 50, 60, or 70).

When the mode or operational status for an RTMS changes, an event is pushed to allow
other software processes to be asynchronously notified of the changes. Changes to values of
traffic parameters shall not cause an asynchronous event to be pushed, and instead the
current status of all RTMSs in the system (including the current values for traffic
parameters) shall be pushed periodically on regular intervals.

3.1.1.5 Get RTMS Configuration (Use Case)

The configuration values as set in the Set RTMS Configuration use case can be retrieved to
determine the current configuration of the RTMS. See the Set RTMS Configuration use
case for details on specific values that may be obtained.

When a configuration value for an RTMS changes, an event is pushed on an event channel
to allow software processes to be asynchronously notified of configuration changes.

3.1.1.6 Log Raw RTMS Data (Use Case)

The raw data for each RTMS shall be logged to a flat file when the RTMS is polled. Each
line of data in the log file shall be tagged with the ID and name of the RTMS. The data
shall be logged in text format and shall include the volume, occupancy, and speed reported
for each of the 8 RTMS detection zones. The data shall only be logged for an RTMS that is
in online mode. A new file shall be created and used for each day’s data. Old log files shall
be deleted automatically. The maximum age of a log file (before it is considered old) shall
be configurable.

3.1.1.7 Poll RTMS (Use Case)

The system shall support the polling of the X2 model RTMS. When the RTMS is polled, a
connection shall be established via modem and a data request shall be sent to the device.
The response from the device shall be checked for format and data errors.

3.1.1.8 Put RTMS in Maint Mode (Use Case)

A user with the proper functional rights (usually assigned to an administrator) shall be able
to change the mode of an RTMS from online or offline to maintenance mode. A notification
of the mode change shall be sent to interested parties.

When an RTMS is placed into maintenance mode, the system continues to poll the device,
however all status (queried or via asynchronous notification) shall indicate that the device is
in maintenance mode. Additionally, raw data shall not be logged for an RTMS in
maintenance mode.

R1B2A High Level Design Rev.0 3-6 10/16/00

3.1.1.9 Put RTMS Online (Use Case)

A user with the proper functional rights (usually assigned to an administrator) shall be able
to change the mode of an RTMS from offline or maintenance mode to online mode. Placing
an RTMS online shall start the polling of the RTMS (if it was offline) and make its data
eligible for use by clients such as the web site. A notification of the mode change shall be
sent to interested parties.

3.1.1.10 Remove RTMS (Use Case)

A user with the proper functional rights (usually assigned to an administrator) shall be able
to remove an RTMS from the system. When an RTMS is removed, notification of its
removal shall be sent to interested parties.

3.1.1.11 Summarize Roadway Status (Use Case)

The status of all individual RTMS devices is collected and provided in a format that can be
used to satisfy web requests for the current roadway status.

3.1.1.12 Take RTMS Offline (Use Case)

A user with the proper functional rights (usually assigned to an administrator) shall be able
to change the mode of an RTMS from online or maintenance mode to offline. When an
RTMS is placed offline, the system shall cease polling of the device. A notification of the
mode change shall be sent to interested parties.

3.1.1.13 View Roadway Status (Use Case)

The current status of Maryland’s roadways that are equipped with RTMS devices can be
viewed in the form of a map, with colors and symbols used to represent the current speed
range at a given point on the road.

R1B2A High Level Design Rev.0 3-7 10/16/00

3.2 Class Diagrams

3.2.1 TransportationSensorSystem (Class Diagram)

This class diagram shows software objects and interfaces that provide an interface to RTMS
data contained within the CHART II system. While the current requirement is to retrieve
data from RTMS devices, this design uses terminology and design concepts that apply to
other sensor devices known in the NTCIP impending standard as Transportation Sensor
Systems (TSS).

This diagram is focused on the CHART II interfaces that are presented to allow other
applications to access TSS data. Implementation specific details are to be included in a
detailed design.

discriminator equals
ConfigChanged

or
ObjectAdded

discriminator equals
CurrentStatus

ModeChanged or
OpStatusChanged

discriminator equals
ObjectRemoved

1

1

*1

1

PortManagerCommsData

1

1

CommPortConfig

1

1

CommunicationMode OperationalStatus

1

1

1

1

Direction

1

1

*

1

PortLocationData

1..*

ZoneGroup

TrafficParameters

1*

Identifier

TransportationSensorSystemFactory

discriminator equals
ObjectRemoved

1

1

* 1TransportationSensorSystem

UniquelyIdentifiable GeoLocatable

PortManager

DataPort

*

1

RTMSFactory

Retrieves modem
using

11

communicates to
field device with

1

1

CommEnabled

TSSEventType

TSSEvent
1*

TSSConfiguration

discriminator equals
ConfigChanged

or
ObjectAdded

1

1

discriminator equals
CurrentStatus

ModeChanged or
OpStatusChanged

1..*

1

pushes
updates
within1

1

TSSStatus

1 1

ZoneGroupTrafficParms

RTMS

int m_zoneGroupNum
string m_description
Direction m_direction
int[] m_zoneNumbers

int m_zoneGroupNum
TrafficParameters m_trafficParms

createRTMS(TSSConfiguration):RTMS

PortManagerCommsData[] m_commsData;
PortType m_portType;
int m_portWaitTimeSecs;

byte[]

getList():TransportationSensorSystem[]

string m_portManagerName;
string m_devicePhoneNumber;

int m_baudRate
DataBits m_dataBits
StopBits m_stopBits
Parity m_parity
FlowControl m_flowControl

ONLINE
OFFLINE
MAINT_MODE

OK
COMM_FAILURE
HARDWARE_FAILURE

getStatus():TSSStatus
getConfiguration(byte[] token):TSSConfiguration
setConfiguration(byte[] token, TSSConfiguration):void
remove(byte[] token);

getID
getName

String getLocationDesc()

getPort(long portType,
 long priority,
 long timeoutMillis):Port
releasePort(byte[] id):bool

send(byte[] data):long
receive(long initialTimeoutMillis,
 long interCharTimeoutMillis):byte[]

ObjectAdded
ObjectRemoved
CurrentStatus
ConfigChanged
ModeChanged
OpStatusChanged

takeOffline
putOnline
putInMaintenanceMode
getCommMode

discriminator()
configInfo()
statusInfo()
id()

byte[] m_id;
String m_name;
String m_location;
int m_dropAddress;
ZoneGroup[] m_zoneGroups;
int m_pollIntervalSecs;
CommPortConfig m_commPortCfg;
PortLocationData m_portLocData;
boolean m_debugComms;

byte[] m_id;
ZoneGroupTrafficParms[] m_trafficParameters
CommunicationMode m_mode;
OperationalStatus m_opStatus;
long m_trafficParameterTimestamp;

int m_speedData;
int m_volumeData;
int m_percentOccupancy;

OTHER_NO_ADDITIONAL_INFO
OTHER_ADDITIONAL_INFO
NORTH
NORTH_EAST
EAST
SOUTH_EAST
SOUTH
SOUTH_WEST
WEST
NORTH_WEST
INNER_LOOP
OUTER_LOOP

Figure 2. TransportationSensorSystem (Class Diagram)

R1B2A High Level Design Rev.0 3-8 10/16/00

3.2.1.1 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can have their communications
turned on or off. This typically only applies to field devices.

3.2.1.2 CommPortConfig (Class)

This structure is used to pass comm port configuration values during a connection request.

3.2.1.3 CommunicationMode (Class)

The CommunicationMode class enumerates the modes of operation for a device: ONLINE,
OFFLINE, and MAINT_MODE. ONLINE is used to indicate the device is available to the
operational system. Offline is used to indicate the device is not available to the operational
system and communications to the device have been disabled. MAINT_MODE is used to
indicate that the device is available only for maintenance / repair activities and testing.

3.2.1.4 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received. Ports of this type
support a receive method that allows a chunk of all available data to be received. This
method prevents callers from having to issue many receive calls to parse a device response.
Instead, this receive call returns all available data received within the timeout parameters.
The caller can then parse the data on their side. Using this mechanism, device command
and response should require only one call to send and one call to receive.

3.2.1.5 Direction (Class)

This enumeration defines direction of travel.

3.2.1.6 GeoLocatable (Class)

This interface must be supported by any system object that can be located via a geographic
reference. This interface will be expanded in future releases to include the information
necessary for placing objects on a system map.

3.2.1.7 Identifier (Class)

The identifier typedef is used to represent a CHART II unique identifier, which is a byte
array containing 32 bytes.

3.2.1.8 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a device can have:
OK (normal status), COMM_FAILURE (no communications to the device), or
HARDWARE_FAILURE (device is reachable but is reporting a hardware failure).

R1B2A High Level Design Rev.0 3-9 10/16/00

3.2.1.9 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to
communicate with a device.

m_commsData – One or more objects identifying the communications server
(PortManager) to use to communicate with the device, in order of preference.

m_portType – The type of port to use to communicate with the device (ISDN modem,
POTS modem, direct, etc.)

m_portWaitTimeSecs – The maximum number of seconds to wait when attempting to
acquire a port from a port manager.

3.2.1.10 PortManager (Class)

A PortManager is a software object that manages access to physical communications ports
on a computer. The port manager allows ports to be requested by type and priority. When
the demand for a specific type of port is greater than the supply, the PortManager queues
the requests using priority. The PortManager also allows a timeout to be specified to
indicate the amount of time the caller is willing to wait for a port to become available.

3.2.1.11 PortManagerCommsData (Class)

This class contains values that identify a port manager and the phone number to dial to
access a device from the given port manager. This class exists to allow for the phone
number used to access a device to differ based on the port manager to take into account the
physical location of the port manager within the telephone network. For example, when
dialing a device from one location the call may be long distance but when dialing from
another location the call may be local.

3.2.1.12 RTMS (Class)

A Remote Traffic Microwave Sensor (RTMS) is a type of TransportationSensorSystem
manufactured by EIS inc. It senses traffic parameters for eight detection zones. This is a
tagging interface used to distinguish RTMS objects from other types of
TransporationSensorSystem objects in the system.

3.2.1.13 RTMSFactory (Class)

This interface is implemented by objects that can create and serve
TransportationSensorSystem objects that provide access to RTMS devices.

3.2.1.14 TrafficParameters (Class)

This struct contains traffic parameters that are sensed and reported by a Traffic Sensor
System such as the RTMS.

R1B2A High Level Design Rev.0 3-10 10/16/00

m_speedData – The average speed collected over a sample period in miles per hour in
tenths (thus 550 = 55.0 MPH). Valid values are 0 to 2550. A value of 65535 is used to
indicate a missing or invalid value (such as when the volume for the sample period is zero).

m_volumeData – The count of vehicles for the sample period. Valid values 0 to 65535. A
value of 65535 represents a missing value.

m_percentOccupancy – The percentage of occupancy of the roadway in tenths of a percent
(thus 1000 = 100.0 percent). Valid values are 0 to 1000. A value of 65535 represents a
missing or invalid value.

3.2.1.15 TransportationSensorSystem (Class)

A Transportation Sensor System (TSS) is a generic term used to describe a class of
technology used for detection within the transportation industry. Examples of TSS devices
range from the advanced devices, such as RTMS, to basic devices, such as single loop
detectors.

This software interface is implemented by objects that provide access to the traffic
parameters sensed by a Transportation Sensor System. Transportation Sensor Systems are
capable of providing detection for one or more detection zones, known as Sensor Zones. A
single loop detector would have one sensor zone, while an RTMS would have eight sensor
zones.

3.2.1.16 TransportationSensorSystemFactory (Class)

This interface is implemented by objects that are used to create and serve Sensor System
Objects. All factories of sensor system objects can return the list of Sensor System objects,
which they have created and serve. Derived interfaces are used to provide factories to create
specific make, models, and types of TransportationSensorSystem objects.

3.2.1.17 TSSConfiguration (Class)

This class holds configuration data for a transportation sensor system (TSS) as follows:

m_id – The unique identifier for this sensor system. This field is ignored when the object is
passed to the SensorSystem to change its configuration.

m_name – The name used to identify the SensorSystem.

m_location – A descriptive location of the SensorSystem.

m_dropAddress – The drop address for the device.

m_zoneGroups – logical groupings of detection zones, used to provide a single set of traffic
parameters for one or more detection zones.

m_pollIntervalSecs – The interval on which the SensorSystem should be polled for its
current traffic parameters (in seconds).

R1B2A High Level Design Rev.0 3-11 10/16/00

m_commPortCfg – Communication configuration values.

m_portLocData – Configuration information that determines which port manager(s) should
be used to establish a connection with the SensorSystem.

m_debugComms – Flag used to enable/disable the logging of communications data for this
SensorSystem. When enabled, command and response packets exchanged with the device
are logged to the application’s log file.

3.2.1.18 TSSEvent (Class)

The class is a CORBA union that contains varying data depending on the current value of
the discriminator.

If the discriminator is ConfigChanged or ObjectAdded, this union contains a TSSConfig
object.

If the discriminator is ObjectRemoved, this union contains a byte[] containing the unique
identifier for the Traffic Sensor System that was removed.

If the discriminator is CurrentStatus, the union contains an array of one or more TSSStatus
objects.

If the discriminator is ModeChanged, or OpStatusChanged, the union contains a single
TSSStatus object.

3.2.1.19 TSSEventType (Class)

This enumeration defines the types of events that may be pushed on an event channel by a
Transportation Sensor Status object. The values in this enumeration are used as the
discriminator in the TSSEvent union.

ObjectAdded – a TransportationSensorSystem has been added to the system.

ObjectRemoved – a TransportationSensorSystem has been removed from the system.

CurrentStatus – The event contains the current status of one or more Transportation Sensor
System objects.

ConfigChanged – One or more configuration values for the Transportation Sensor System
has been changed.

ModeChanged – The communications mode of the TransportationSensorSystem has
changed.

OpStatusChanged – The operational status of the TransportationSensorSystem has changed.

R1B2A High Level Design Rev.0 3-12 10/16/00

3.2.1.20 TSSStatus (Class)

This class holds current status information for the RTMS as follows:

m_id – The ID of the RTMS for which this status applies.

m_trafficParameters – The traffic parameters for zone group of the Transporation Sensor
System as specified in the Sensor system’s TSSConfig object.

m_mode – The communication mode of the TSS.

m_opStatus – The operational status for the TSS.

m_trafficParameterTimestamp – A timestamp that records when the traffic parameter data
was collected from the device.

3.2.1.21 UniquelyIdentifiable (Class)

This interface is implemented by classes whose instances have a unique identifier that is
guaranteed not to match the identifier of any other uniquely identifiable objects in the
system.

3.2.1.22 ZoneGroup (Class)

This class is used to group one or more detection zones of a Transportation Sensor System
into a logical grouping. Traffic parameters for all detection zones included in the group are
averaged to provide a single set of traffic parameters for the group.

3.2.1.23 ZoneGroupTrafficParms (Class)

This struct contains traffic parameters for a ZoneGroup.

m_zoneGroupNumber – The number of the zone group for which the traffic parameters
apply.

m_trafficParms – The traffic parameter values for the zone group.

R1B2A High Level Design Rev.0 3-13 10/16/00

3.3 Sequence Diagrams

3.3.1 AddRTMS:Basic (Sequence Diagram)

An administrator can add an RTMS to the system. The administrator uses the Graphical
User Interface (GUI) to start the add operation. A TSSConfiguration object is created in the
GUI and values are changed by the administrator via the properties dialog. When the
administrator is finished setting the configuration values, the administrator presses the OK
button to cause the RTMS to be created with the specified configuration values.

ProxyPushConsumer

push (ObjectAdded)

Administrator

RTMS

TSSConfiguration
The administrator uses the GUI to choose to
Add an RTMS. This causes a new TSSConfig
object to be created and an TSS properties dialog
to be shown to allow the editing of the TSSConfiguration
object.

RTMSFactory

The administrator uses the TSS properties dialog
to change values in the TSSConfiguration object.

If the administrator clicks the OK button on the properties
dialog, an RTMS is added to the system using the TSSConfiguration
the administrator populated.

create

set value x

set value y

createRTMS

create

Figure 3. AddRTMS:Basic (Sequence Diagram)

R1B2A High Level Design Rev.0 3-14 10/16/00

3.3.2 ConfigureRTMS:Basic (Sequence Diagram)

An administrator can change the configuration of an RTMS. A GUI is used to first view the
current configuration and then to change any of the configuration values. If the
administrator wishes to save the changes, the OK button is pressed to send the new
configuration to the RTMS object. If the administrator wishes to cancel without saving
changes, they can press the cancel button on the dialog. If a new configuration is set, the
RTMS object stores the configuration values and pushes an update to let others know of the
configuration change.

Administrator

RTMS

When the administrator opens the
properties dialog for an RTMS, its
current configuration values are shown.

TSSConfiguration

Using the properties dialog, the administrator
changes zero or more configuration values.

ProxyPushConsumer

If the administrator wants to keep the changes
to the configuration, they press the OK button,
which causes the new configuration values to
be sent to the RTMS via the setConfiguration()
method.

getConfiguration

TSSConfiguration

change value x

change value y

setConfiguration

push (ConfigChanged)

Figure 4. ConfigureRTMS:Basic (Sequence Diagram)

R1B2A High Level Design Rev.0 3-15 10/16/00

3.3.3 DetermineRTMSStatus:Basic (Sequence Diagram)

The RTMS software object periodically polls the RTMS device and retrieves the traffic
parameters. It summarizes the lane (detection zone) level data according to the zone groups
that are specifed in the TSSConfiguration object. This summarization is the average speed
for all detection zones in the group, the sum of the volume from each detection zone in the
group, and the average occupancy of the detection zones in the zone group. If there is no
volume for a detection zone, the speed last sensed in the detection zone is used in the
summary data in place of the actual speed of zero. (The volume and occupancy reported by
the RTMS are used as normal in this case.)

If a change to the operational status occurs due to a communication failure or because the
device is reporting a hardware problem, an asynchronous event is pushed to provide
notification of the change to other applications.

Note that an asynchronous event with the current traffic parameter data is not pushed during
the polling task for the RTMS. Instead, the data for all RTMS devices is pushed
periodically. See the DetermineRTMSStatus:CurrentStatusPush diagram for details.

[health status from device is not OK]
set op status to HARDWARE_FAILURE

[comms to device failed]
set op status to COMM_FAILURE

[op status changed]
push (OpStatusChanged)

average the occupancy

pollDevice
When the device is polled, the detection zone (lane) level traffic parameters are
 returned. See the PollRTMS:Basic sequence diagram for details

java.util.Timer

RTMS ProxyPushConsumer

TSStatus

poll

create

ZoneGroupTrafficParms

If there is no volume
for a detection zone,
(and hence no speed)
the last speed for which
a volume > 0 is used
in place of the current
(zero) value.

[op status is OK]
[*for each zone group]

[*for each detection
zone in the
zone group]

create

average the speed

sum the volume

store the traffic parameters for the zone group

Figure 5. DetermineRTMSStatus:Basic (Sequence Diagram)

R1B2A High Level Design Rev.0 3-16 10/16/00

3.3.4 DetermineRTMSStatus:CurrentStatusPush (Sequence Diagram)

Because traffic parameter data is very dynamic, the system does not push asynchronous
notifications with each change. Instead, the system periodically pushes an asynchronous
event with the current status of all RTMS devices.

Timer
RTMSFactory TSSStatus[]RTMS ProxyPushConsumer

publish status

getStatus

TSSStatus

add
[*for each RTMS]

push (CurrentStatus)

Figure 6. DetermineRTMSStatus:CurrentStatusPush (Sequence Diagram)

R1B2A High Level Design Rev.0 3-17 10/16/00

3.3.5 GetRTMSConfiguration:Basic (Sequence Diagram)

Each RTMS object maintains its current configuration values as set during pre-deployment
population, set via changes to the configuration, or set as the initial values when the object
was added to the CHART II system. When asked for its configuration, the RTMS returns
the latest configuration values that have been set.

Chartweb.TSSClient

RTMS

getConfiguration

TSSConfiguration

Figure 7. GetRTMSConfiguration:Basic (Sequence Diagram)

R1B2A High Level Design Rev.0 3-18 10/16/00

3.3.6 GetRTMSStatus:Basic (Sequence Diagram)

TransporationSensorSystem objects maintain their current status as of the last poll of the
field device. When asked for the current status, the object returns the TSSStatus with values
that were set when the field device was last polled. This status information includes a
timestamp to allow one to determine the age of the data.

Chartweb.RTMSClient
RTMS

getStatus

RTMSStatus

Figure 8. GetRTMSStatus:Basic (Sequence Diagram)

R1B2A High Level Design Rev.0 3-19 10/16/00

3.3.7 LogRawRTMSData:Basic (Sequence Diagram)

Each time an RTMS is contacted and data is retrieved, the data is logged on a single line in
the RTMS raw data text file. Each line is marked with the current date and time as well as
identifying information for the RTMS. Each field on a line is separated from the previous
field with a comma. The use of a text file makes the data human readable (if necessary), and
the use of a comma delimited format allows the data to be read into third party applications
or databases easily.

log the occupancy

log the speed

log the health status byte

Each field that is logged
is separated from the previous
field with a single comma.

logRawData

log the RTMS ID

log the RTMS Name

[*for each zone (0 - 7)]

log the volume

TransportationSensorSystem
RTMS RTMS Raw Data File

log the current date

log the current time

[*for each zone (0 - 7)]

[*for each zone (0 - 7)]

RTMS is an implementation of
TransporationSensorSystem

Figure 9. LogRawRTMSData:Basic (Sequence Diagram)

R1B2A High Level Design Rev.0 3-20 10/16/00

3.3.8 PollRTMS:Basic (Sequence Diagram)

When the RTMS object polls the RTMS device in the field, it obtains access to a modem
from a PortManager object and uses the modem to connect to the field device. If a
connection to the field device cannot be established, the device is marked as being comm
failed and an event is pushed if the operational status was not previously
COMM_FAILURE. The device is also marked as COMM_FAILURE if the field device
does not respond to the data request command.

If a response is received from the device, the raw data is logged to the RTMS raw data log
file in a comma delimited format. The device status field in the response data is checked for
an indication of a hardware failure. If a hardware failure is detected, the RTMS is marked
as hardware failed and an event is pushed if the operational status was not previously
HARDWARE_FAILURE.

If none of the above errors occurred, the zone level data is passed to the caller of
pollDevice().

R1B2A High Level Design Rev.0 3-21 10/16/00

disconnect

releasePort

RTMS

RTMS PortManager DataPortRTMSProtocolHdlr ProxyPushConsumer

pollDevice

getPort (Polling Priority)

Port

connect

connection results

getStatus

send (Data Request)

receive

response data

[response]
zone (lane) level
traffic parameters

 plus device
status

RTMS Raw Data File

[connection failed]
set op status to COMM_FAILURE

[COMM_FAILURE and not previously COMM_FAILURE]
push (RTMSOpStatusChanged)

[COMM_FAILURE]

[no response]

[no response]
set op status to COMM_FAILED

[COMM_FAILURE and not previously COMM_FAILURE]
push (RTMSOpStatusChanged)

[COMM_FAILURE]

[returned device
status indicates HW fail]

set op status to
HARDWARE_FAILURE

HARDWARE_FAILURE and not previously HARDWARE_FAILURE

[HARDWARE_FAILURE]

[response and device is online]
log raw data

zone (lane) level
traffic parameter

data plus
device status

RTMSProtocolHdlr is an implementation specific class
used by the RTMS object to communication with an RTMS.

Figure 10. PollRTMS:Basic (Sequence Diagram)

R1B2A High Level Design Rev.0 3-22 10/16/00

3.3.9 PutRTMSinMaintMode:Basic (Sequence Diagram)

An administrator can put an RTMS into maintenance mode if the RTMS is currently online
or offline. When placed into maintenance mode, the raw data logging for the RTMS is
disabled. If the RTMS was offline (and therefore polling was disabled), polling is enabled.
An event is pushed to notify other applications and objects of the mode change.

disable raw data logging

Administrator
RTMS ProxyPushConsumer

putInMaintenanceMode

set mode to maint mode

[polling currently disabled]
resume polling

push (ModeChanged)

Figure 11. PutRTMSinMaintMode:Basic (Sequence Diagram)

R1B2A High Level Design Rev.0 3-23 10/16/00

3.3.10 PutRTMSOnline:Basic (Sequence Diagram)

An administrator can put an RTMS online if it is currently in maintenance mode or offline.
If the RTMS was offline (and therefore polling was disabled), polling is enabled. Raw data
logging is enabled when the RTMS is placed online. An event is pushed to notify other
applications and objects of the mode change.

Administrator
RTMS ProxyPushConsumer

putOnline

set mode to online

[polling currently disabled]
resume polling

push (ModeChanged)

enable raw data logging

Figure 12. PutRTMSOnline:Basic (Sequence Diagram)

R1B2A High Level Design Rev.0 3-24 10/16/00

3.3.11 RemoveRTMS:Basic (Sequence Diagram)

An administrator can use the GUI to remove an RTMS from the system. The administrator
is provided a warning message and asked to confirm the removal. Once confirmed, the
remove method is called on the RTMS, which delegates the work to the RTMSFactory that
originally created the RTMS. An event is pushed to notify other applications and objects of
the removal of the RTMS.

Administrator
RTMS ProxyPushConsumerRTMSFactory

remove

removeRTMS

push (ObjectRemoved)

Figure 13. RemoveRTMS:Basic (Sequence Diagram)

R1B2A High Level Design Rev.0 3-25 10/16/00

3.3.12 SummarizeRoadwayStatus:ConfigChanged (Sequence Diagram)

The CHART II system pushes an event to the Chartweb.TSSClient when the configuration
of an RTMS is changed in the CHART II system. The Chartweb.TSSClient handles this
event by adding new rows to the web database for each zone group configured for the
RTMS if a row does not currently exist. Also, rows that exist for zone groups, which the
RTMS configuration no longer contains, are removed from the database.

CHART II

Chartweb.TSSClient Web DB

ConfigChanged Event

[* for each ZoneGroup
object in the TSSConfiguration]

[if row does not exist for RTMS ID, zone group ID]
Insert row for RTMS ID, zone group ID

[* for each row in the DB
with this RTMS ID and a zone group id

no longer present in the config]
Delete row

Figure 14. SummarizeRoadwayStatus:ConfigChanged (Sequence Diagram)

R1B2A High Level Design Rev.0 3-26 10/16/00

3.3.13 SummarizeRoadwayStatus:CurrentStatus (Sequence Diagram)

The CHART II system provides status updates to the Chartweb.TSSClient periodically on a
regular interval. The Chartweb.TSSClient handles this event by storing the new speed range
for each zone group of each RTMS in the web database, which is keyed on the CHART II
ID and zone group ID.

set speed range for RTMS ID, zone group id

Web DB

CurrentStatus Event

[mode == Online AND
Op Status == OK]

[* for each zone group
in the TSSStatus]

[Database entry for RTMS ID, zone group id
does not exist]

insert record for RTMS ID, zone group id

CHART II

Chartweb.RTMSClient

[* for each TSSStatus
contained in the

event data]

determine speed range
for given average speed

Figure 15. SummarizeRoadwayStatus:CurrentStatus (Sequence Diagram)

R1B2A High Level Design Rev.0 3-27 10/16/00

3.3.14 SummarizeRoadwayStatus:Initialize (Sequence Diagram)

When the Chartweb.TSSClient is first initialized, it prepares itself to receive asynchronous
updates of TSSStatus from the CHART II. Chartweb.TSSClient then gets the current state
of RTMS objects from CHART II and sets the web database data to match the CHART II
current state. After this initialization is complete, updates to the status of RTMS devices are
received asynchrounously as changes occur, at which time the Chartweb.TSSClient makes
appropriate updates to the web database. See the other SummarizeRoadwayStatus sequence
diagrams for details.

If the Chartweb.TSSClient is unable to contact the CHART II trader or event service, all
rows in the web DB are marked offline and this sequence is retried periodically.

If individual RTMS objects within the CHART II system cannot be contacted, rows for the
specific RTMS are marked offline in the web database and this sequence is retried
periodically.

This sequence is also carried out when the Chartweb.TSSClient suspects the CHART II
system has gone down due to the lack of events received from CHART II. When this
occurs, this initialization sequence will serve to verify the current status of the RTMS
objects or to confirm that CHART II is not fully available and to mark the appropriate
RTMS objects offline.

R1B2A High Level Design Rev.0 3-28 10/16/00

Update all rows for given RTMS ID with mode and operational status

[mode == Online AND
Op Status == OK]

[* for each zone group
in the TSSStatus]

Update current speed range data for RTMS ID, zone group id

Web Server
org.omg.CosTrading.Lookup RTMSorg.omg.CosEventComm.EventChannel

After initialization is complete, the Chartweb.TSSClient maintains the status information via asynchronous events received from the event channel(s).

[*for each RTMS Event Channel]
"Add push consumer"

Web DB

initialize

TSSStatus

[*for each TSS]

Chartweb.TSSClient

getStatus

query("TSS Event Channels")

query("RTMS")

[* for each zone group
in the TSSConfiguration

getConfiguration

TSSConfiguration

[row does not exist for RTMS ID, zone group id]
Insert

[* for each row that exists
for the TSS Id, zone group id

but does not exist
as in the TSSConfiguration

Delete

Figure 16. SummarizeRoadwayStatus:Initialize (Sequence Diagram)

R1B2A High Level Design Rev.0 3-29 10/16/00

3.3.15 SummarizeRoadwayStatus:ModeChanged (Sequence Diagram)

The CHART II system pushes an event to the Chartweb.TSSClient when the mode (online,
offline, or maintenance) for an RTMS is changed. The Chartweb.TSSClient handles this
event by updating all rows in the web database for the given RTMS ID with the new mode.
The web map will only show data for rows in the database that are marked “online.”

CHART II

Chartweb.TSSClient Web DB

ModeChanged Event

Update all rows for the given ID
with the current mode

Figure 17. SummarizeRoadwayStatus:ModeChanged (Sequence Diagram)

R1B2A High Level Design Rev.0 3-30 10/16/00

3.3.16 SummarizeRoadwayStatus:ObjectAdded (Sequence Diagram)

The CHART II system pushes an event to the Chartweb.TSSClient when an RTMS is
added to the CHART II system. The Chartweb.TSSClient handles this event by inserting a
new row in the web database for each zone group configured for the RTMS (if a row with
the given key does not already exist).

After rows are added to the web database, configuration of the web map must be done to
associate map symbols with each row in the database. Note that all known RTMS objects
can be added to the CHART II system during the initial deployment, even though the
RTMS devices may not be functioning (They are added in an offline state). This would
allow an initial population of the CHART II system and the Web Map to be done on the
initial deployment. Using this approach, as each RTMS is brought online, its data will
automatically appear on the Web Map without further configuration.

[row does not already exist for
RTMS ID, zone group id]

Insert row for RTMS ID, zone group id

CHART II

Chartweb.TSSClient Web DB

ObjectAdded Event

[* for each zone group
in the TSSConfiguration]

Figure 18. SummarizeRoadwayStatus:ObjectAdded (Sequence Diagram)

R1B2A High Level Design Rev.0 3-31 10/16/00

3.3.17 SummarizeRoadwayStatus:ObjectRemoved (Sequence Diagram)

The CHART II system pushes an event to the Chartweb.RTMSClient when an RTMS is
removed from the CHART II system. The Chartweb.RTMSClient handles this event by
deleting all rows from the web database for the given RTMS ID.

CHART II

Chartweb.TSSClient Web DB

ObjectRemoved Event

Delete all rows with the given ID

Figure 19. SummarizeRoadwayStatus:ObjectRemoved (Sequence Diagram)

R1B2A High Level Design Rev.0 3-32 10/16/00

3.3.18 SummarizeRoadwayStatus:OpStatusChanged (Sequence Diagram)

The CHART II system pushes an event to the Chartweb.TSSClient when the operational
status (OK, Communications Failure, or Hardware Failure) for an RTMS has changed. The
Chartweb.TSSClient handles this event by updating all rows in the web database for the
given ID with the new operational status. The web map will only show data for rows in the
database that are marked with an operational status of “OK.”

CHART II

Chartweb.RTMSClient Web DB

RTMSOpStatusChanged Event

Update all rows for the given RTMS ID
with the new operational status

Figure 20. SummarizeRoadwayStatus:OpStatusChanged (Sequence Diagram)

R1B2A High Level Design Rev.0 3-33 10/16/00

3.3.19 TakeRTMSOffline:Basic (Sequence Diagram)

An administrator can take an RTMS offline if the RTMS is currently in maintenance mode
or online. Polling of the RTMS is disabled when it is offline. An event is pushed to notify
other applications and objects of the mode change.

Administrator
RTMS ProxyPushConsumer

takeOffline

set mode to offline

disable polling

push (ModeChanged)

Figure 21. TakeRTMSOffline:Basic (Sequence Diagram)

R1B2A High Level Design Rev.0 3-34 10/16/00

3.3.20 ViewRoadwayStatus:Basic (Sequence Diagram)

When a web user requests the web page that contains the current speed data, the web server
forwards a request to the map server to have it generate a map based on the current speed
range data. The map server uses the speed range data from the web database when
generating the map. The map server then responds to the web server, allowing the web
server to serve the generated map to the web user.

The speed range data in the web database is kept up to date through a separate process. See
the SummarizeRoadwayStatus.Basic sequence diagram for details.

Web User

Web Server Map Server Web DB

Web Page Request

Map Generation Request

Select Speed Range Data

Speed Range Data for
Map Symbols

Map Generation Response

Web Page

Figure 22. ViewRoadwayStatus:Basic (Sequence Diagram)

R1B2A High Level Design Rev.0 4-35 10/16/00

4 Packaging

4.1.1 TSSPackaging (Class Diagram)

This diagram shows the software packages involved in supplying RTMS data to the Web
and the dependencies between the packages. The org.omg.* packages are provided by the
ORB vendor. The CHART II team supplies the CHART2 packages. The Chartweb package
represents the interface to be provided by the Web team to access the RTMS data (or any
other Transportation Sensor System’s data) from CHART II.

TransportationSensorSystem

CHART2.TSSManagement

CHART2.FieldCommunications

Chartweb.TSSClient

org.omg.CosEventComm

org.omg.CosTrading

CHART2.GUITSSModule

TransportationSensorSystemFactory

PortManager

DataPort

Figure 23. TSSPackaging (Class Diagram)

R1B2A High Level Design Rev.0 5-36 10/16/00

5 Deployment

5.1 RTMSDeployment (Deployment Diagram)
This diagram shows a representation of the types of server and client machines that exist
within the system and the connections that exist between them.

CHART II GUI Workstation

CHART II GUI

Initialization
Data Gathering

and
Configuration

Data

CORBA
Events

CHART II Server
FMS Remote Server

RTMS Service

CORBA Event Service

SQLServer

Web Page
Responses

CORBA Trading Service

Map Server
Connector

Map ServerWeb DB Server

CommService

Web Server

Map Servlet

Web Client

Web Browser

ORACLE Database Server

Initialization
Data Gathering Communication

Requests

Web Page
Requests

Publish
CORBA
Objects

CORBA
Events

Map
Requests Map

Responses

Save
Data

Read
Data

Figure 24. RTMSDeployment (Deployment Diagram)

R1B2A High Level Design Rev.0 BI-1 10/16/00

Bibliography
CHART II Business Area Architecture Report, document no. M361-BA-005R0, Computer
Sciences Corporation and PB Farradyne, Inc., April 28, 2000.

CHART II System Requirements Specification Release 1 Build 2, document no. M361-RS-002R1,
Computer Sciences Corporation and PB Farradyne, Inc.

The Common Object Request Broker: Architecture and Specification, Revision 2.3.1, OMG
Document 99-10-07.

FMS R1B2 High Level Design, document no. M303-RS-002R0, Computer Sciences Corporation
and PB Farradyne, Inc., June 9, 2000.
Martin Fowler and Kendall Scott, UML Distilled, Addison-Wesley, 1997.

National Transportation Communications for ITS Protocol (NTCIP) Object Definitions for
Transportation Sensor Systems (TSS) User Comment Draft, document no. NTCIP 1209 v01.09,
AASHTO et al, July 12, 1999.

RTMS Coordination Meeting Minutes, document no. M361-MM-021R0, Computer Sciences
Corporation and PB Farradyne, Inc., September 20, 2000.

RTMS Design Review Meeting Minutes, document no. M361-MM-023R0, Computer Sciences
Corporation and PB Farradyne, Inc., October 12, 2000.

RTMS Requirements Review Meeting Minutes, document no. M361-MM-019R0, Computer
Sciences Corporation and PB Farradyne, Inc., September 8, 2000.

R1B2A High Level Design Rev.0 AC-1 10/16/00

Acronyms
The following acronyms appear throughout this document:

CHART Coordinated Highways Action Response Team

CORBA Common Object Request Broker Architecture

DBMS Database Management System

FMS Field Management Station

GUI Graphical User Interface

IDL Interface Definition Language

ISDN Integrated Services Digital Network

ITS Intelligent Transportation Systems

NTCIP National Transportation Communications for ITS Protocol

OMG Object Management Group

ORB Object Request Broker

PC Personal Computer

POTS Plain Old Telephone System

RTMS Remote Traffic Microwave Sensor

R1B2A Release 1, Build 2A

TSS Transportation Sensor System

UML Unified Modeling Language

R1B2A High Level Design Rev.0 GL-1 10/16/00

Glossary

Communications Server A PC outfitted with communications hardware and the FMS
Communications Service software.

Graphical User Interface Part of a software application that provides a graphical interface
to its user.

Occupancy A measure of the usage of a roadway’s capacity, expressed as a
percentage.

Operator A Chart II user that works at an Operations Center.

Port A software object used to model a physical communications
port.

Port Manager A software object that manages access to one or more
communications ports.

Protocol Handler A software object that contains code that encapsulates the
specific communications sequences required to command a field
device.

RTMS A sensor used to detect the volume, speed, and occupancy of
traffic at a location on the highway.

Transportation Sensor
System

A system capable of sensing and communicating traffic
parameters.

User A user is someone who uses the CHART II system. Users can
perform different operations in the system depending upon the
roles they have been granted.

Volume A measure of the number of vehicles that have traveled across a
section of roadway during a sample period.

R1B2A High Level Design Rev.0 A-1 10/16/00

Appendix A: CORBA Information

CORBA
CORBA is an architecture specified by the Object Management Group (OMG) for distributed
object oriented systems. The CORBA specification provides a language and platform
independent way for object oriented client/server applications to interact. The CORBA
specification includes an Object Request Broker (ORB), which is the middleware used to allow
client/server relationships between objects. Using a vendor’s implementation of an OMG ORB,
software applications can transparently interact with software objects anywhere on the network
without the application having to know the details of the network communications.

Interfaces to objects deployed in a CORBA system are specified using OMG Interface Definition
Language (IDL). Applications written in a variety of languages or deployed on a variety of
computing platforms can use the IDL to interact with the object, regardless of the language or
computing platform used to implement the object.

CORBA Services
The OMG CORBA specification includes specifications for application servers that provide
basic functionality that is commonly needed by distributed object systems. While there are
specifications for many such services, many services have not yet been implemented. Of the
CORBA Services that are available, the CORBA Event Service and CORBA Trading Service are
utilized in the CHART II system. A description of each of these services follows.

CORBA Event Service
The CORBA Event Service provides for a way to provide data updates within the system in a
loosely coupled fashion. This loose coupling allows applications with data to share to pass the
information via the event service without needing to have knowledge of others that are
consuming the data.

Data passed through the event service is done using event channels. Many different types of
events may be passed on a single event channel. Interested parties may become consumers on a
given event channel and receive all events passed on the channel.

The CHART II system makes use of multiple event channels to allow event consumers to be
more selective about the type of events they receive. Also, event channels of the same type may
exist in multiple regions, allowing the CHART II system to be expandable and multi-regional.
Event channels used in the CHART II system are published in the CORBA trading service to
allow others to select which events they wish to consume.

CORBA Trading Service
The CORBA Trading Service is an online database of objects that exist in a distributed object
system. Servers that have services to offer publish their objects in the trading service.

R1B2A High Level Design Rev.0 A-2 10/16/00

Applications that wish to use the services provided by a server can query the Trading Service to
find objects based on their type or attributes.

CORBA Trading Services can be linked together into a federation. Queries done on single
Trading Service can be made to cascade to all linked Trading Services as well. This feature
allows Trading Services serving single regions to be linked together, providing seamless access
to all objects in the system.

The CHART II System utilizes the CORBA Trading Service to allow the GUI to discover
objects in the system with which it allows the user to interact. Using the linking capabilities of
the Trading Service, the CHART II system can be distributed to multiple districts with the GUI
still able to provide a unified view of the system to the users.

